装设GCB技术分析
安装在发电机出口的低电压、大电流断路器,其作用可谓举足轻重。以前由于发电机巨大的额定电流和短路电流以及开断电流的直流分量大,使得GCB制造困难,造价也甚高。考虑技术和经济因素,除小容量机组的发电机出口设置少油断路器外(单机容量200 MW以下),一般大机组(单机容量200 MW及以上)大都采用发电机—变压器组单元接线,尽量使用离相封闭母线不装出口断路器和隔离开关。近年来,随着GCB制造质量和技术的进步,价格不断降低,而如何提高系统的安全稳定性将越来越得到重视。下面就发电机出口设置断路器的优越性作一分析。
2.1提高系统安全性和稳定性
200 MW及以上的机组采用的发电机与变压器组的单元接线方式的优点在于省去了GCB,同时也省去了相应的继电保护。但是这种简化的接线方式却使得发电机、变压器和系统的稳定运行在很大程度上要取决于主变高压侧的高压断路器运行可靠性的影响。当高压断路器在正常运行中,在执行解列或并车操作时、在事故状态下的动作过程中,如果发生一相或二相断路器因拒动、误动或断口绝缘击穿而导致非全相分、合闸状态时,则电网的安全稳定运行将会受到严重的威胁,极有可能因非全相运行而造成变压器绝缘损坏甚至起火烧毁,发电机转子因负序电流作用而使绝缘损坏甚至起火烧毁、系统稳定性遭受破坏而解列造成大面积停电等重大事故的发生。国内发电厂已发生过不少类似事故,如:某电厂因2号炉故障停机检查,运行人员操作2号机主变断路器跳闸时发现断路器A相拒分,在升压站手跳未获成功后,跳母联断路器将2号机主变与系统解列,造成非全相运行时间长达8 min,引起2号机转子烧毁。又如石洞口二厂2号机作逆功率试验时,2号机逆功率保护动作,同时引起主变高压侧并联的断路器三相分闸。因一台断路器未能分闸到底,造成断路器非全相运行,导致电厂另一台运行的600 MW机组、电网4条500 kV线路、3条220 kV线路、黄渡变的一台500 kV变压器及一台220 kV变压器先后跳闸。
2.2保护发电机及主变压器
当发电机带不平衡负荷运行、内部或外部发生不对称短路时均会对发电机产生很严重的机械和热应力,这种故障电流及其非全相运行的负序分量所引起的热应力加在发电机转子的阻尼绕组上,会产生异常的高温而使发电机转子严重受损。除此以外,高压断路器的合、分闸不同期,避雷器的损坏,架空线或GIS连接套管上行波反射造成的接地故障都会对发电要造成影响,GCB可以迅速切除这些故障,使得发电机免遭损坏。但如果没有装设GCB,发电机会持续提供不平衡负载给故障点,直到灭磁装置起作用。由于灭磁过程往往会持续几秒钟时间,甚至会超过10 s,从而导致发电机严重的损坏。
2.3提高保护选择性
当发电机侧发生故障时,GCB动作将故障点与系统隔离,避免了厂用电事故切换,简化了厂用电源的控制保护接线,降低了保护动作的联锁复杂性。当主变压器侧故障时,GCB可以迅速切除,使得发电机、主变压器和厂用高压变压器处于各自独立的保护范围内。
2.4方便调试和改善同期条件
GCB之所以能执行机组所需的全部操作任务,是因为它的位置处在回路中最恰当的地方,可以在不中断厂用电源的情况下将发电机断开,这样运行人员也减少了操作,避免了出错的可能性。机组投运进行短路试验时,可很方便地实现使用接地开关,否则要进行试验改接线,需投入额外的资金和时间,还有可能承担不必要的风险。
当电厂与电网的连接经由高压断路器通过主变压器受电时,同期点可由GCB来实现。对于同期操作来而言,应用主变高压侧断路器和GCB来进行同期操作有什么不同呢?国外最新的研究表明分别由高压断路器和GCB来实现同期操作和不同期操作所引起的延迟过零电流,对系统有着不同的影响,在反相同期操作过程中由于发电机转子的快速转动会产生的延迟过零电流,高压断路器在切断反相同期电流上能力非常有限,而GCB有足够的能力切断该电流。请登陆:高压开关网浏览更多信息
当同期在高压侧进行操作时,高压断路器可能会受到过电压作用。在污染较重的情况下,可能使高压断路器外部绝缘介质的闪络。再者,高压断路器一般都不是三相机械联动的,所以在同期操作过程中就有可能产生有较大不同期,这样会产生一个不平衡负载,给发电机带来严重的机械和热应力,从而损坏发电机。
当同期在发电机电压等级进行操作时,断路器电压等级的降低有助于防止外部绝缘闪络。用GCB实现同期操作完全在发电厂操控范围内,变电站操控可以不介入,从而不会产生任何操控责任上的重叠。